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Montréal, Qúebec, Canada H3C 3J7
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Abstract. A class of two-dimensional field theories with exponential interactions is introduced.
The interaction depends on two ‘coupling’ matrices and is sufficiently general to include all Toda
field theories existing in the literature. Lie point symmetries of these theories are found for an
infinite, semi-infinite and finite number of fields. Special attention is accorded to conformal
invariance and its breaking.

1. Introduction

The purpose of this paper is to investigate the Lie point symmetries of a large class of
‘generalized Toda field theories’. The class is characterized by the equation

un,xy = Fn Fn =
n+n2∑

m=n−n1

Knm exp

(
m+n4∑
l=m−n3

Hmlul

)
(1.1)

whereK andH are some real constant matrices andn1, . . . , n4 are some finite non-negative
integers. The range ofn may be infinite, semi-infinite or finite, hence the matricesK andH
may also be infinite, semi-infinite or finite.

If the range ofn is finite,K andH may be rectangular, not necessarily square. We assume
that all the rows inH are different, thatH contains no zero rows andK no zero columns. In all
the cases we assume that the range of the interaction on the right-hand side of equation (1.1) is
finite, hence the finite summation limits in both sums. ‘Generalized Toda lattices’ are obtained
from equation (1.1) by symmetry reduction, using translational invariance, i.e. restricting to
solutions of the formun(x, y) = wn(t) wheret = x + λy.

Toda lattices, their generalizations and Toda field theories represent one of the most
interesting, rich and fruitful developments in the realm of completely integrable systems.
The original Toda lattice was introduced by Toda [1, 2] who found analytical solitons and
periodic solutions in a discrete lattice with an exponential potential involving nearest-neighbour
interactions. It was also found that the Toda lattice admits a Lax representation and all the
usual attributes of integrability [3, 4]. The Toda lattice was generalized to integrable lattices
related to the root systems of simple Lie algebras [5–8]. The considered lattices can be finite,
infinite, semi-infinite or periodic.
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The attractive features of Toda lattices have been generalized to two space dimensions in
several different ways [9–19].

All of them can be recovered from equation (1.1) by specifying the matricesK andH .
Thus, the Mikhailov–Fordy–Gibbons field theories [9, 10] (for infinitely many fields)

un,xy = eun−1−un − eun−un+1 (1.2)

are obtained by puttingHnn−1 − Hnn = 1,Knn = −Knn+1 = 1 and all other components to
zero. A class of Toda field theories

un,xy =
n+n2∑

m=n−n1

Knmeum (1.3)

studied by Leznov and Saveliev [12, 13], Olive, Turok and others [14–17] (usually for a finite
number of fieldsun) are obtained by settingH = I and takingK to be the Cartan matrix of a
semisimple Lie algebra (or an affine one).

A further class of Toda field theories, also studied by Leznov and Saveliev [13, 14], Bilal
and Gervais [17], and Babelon and Bonora [18] (for a finite number of fields) can be written
as

un,xy = exp
m+n4∑
l=m−n3

Hnlul (1.4)

and is obtained by takingK = I andH as a Cartan matrix.
In this paper we will be interested in point symmetries of the system (1.1), rather than

in questions of integrability or explicit solutions. The symmetries we are interested in will
include conformal invariance, whenever it is present, and gauge invariance, if not, however,
higher, or generalized symmetries, be they local, or not.

In section 2 we consider infinite Toda field theories, i.e. take−∞ < n <∞. In this case
equation (1.1) can be viewed as a differential-difference equation. Continuous Lie symmetries
of such equations have been studied using several different approaches [20–29]. We shall
follow that of [20–24], using both the ‘intrinsic method’ and the ‘differential equation method’
[21].

In section 3 we turn to finite Toda field theories, when we have 16 n 6 N < ∞ in
equation (1.1). Equation (1.1) in this case represents a system ofN differential equations and
its point symmetries can be obtained in a standard manner [30, 31]. We first obtain general
results, and then specify the matricesH andK in several different ways.

Section 4 is devoted to semi-infinite Toda field theories, i.e. 06 n < ∞. Again we first
obtain general results, and then specify the matricesH andK, enforcing the cut-off atn = 0
in several different ways.

Some conclusions are drawn in section 5.

2. Symmetries of generalized∞-Toda field theories

2.1. General results

Let us consider equation (1.1) withn in the range−∞ < n <∞. We follow the ‘differential
equation method’ described in [21] and look for transformations of the form

Ẽx = 3g(Ex, {uk}) ũn = �g(Ex, n, {uk}) ñ = n (2.1)
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where we have used the notationEx ≡ (x, y), Ẽx ≡ (x̃, ỹ), taking solutions of equation (1.1)
into solutions. The notation{uk} indicates that the new variables can depend on all the fields
{uk}k∈Z.

The Lie group transformation (2.1) is generated by a Lie algebra of vector fields of the
form

v̂ = ξ(x, y, {uk})∂x + η(x, y, {uk})∂y +
∞∑

j=−∞
φj (x, y, {uk})∂uj . (2.2)

The prolongation of this vector field is constructed in the same manner as for differential
equations [30, 31] (albeit an infinite system of them). For a general equation of the form

En = un,xy − Fn(x, y, {uk}) = 0 (2.3)

we require

pr(2)v̂En|En=0 = 0. (2.4)

It was shown quite generally [21] that for equation (2.3) withFn any sufficiently smooth
function depending on at least one functionuk, k 6= n, the vector field (2.2) satisfying
equation (2.4) will have the form

ξ = ξ(x) η = η(y) φn =
∞∑

k=−∞
Ankuk +Bn(x, y) (2.5)

whereA = {Anα} is a constant (infinite) matrix. The functions in equation (2.5) must satisfy
a remaining determining equation, namely

Bn,xy − (ξx + ηy)Fn +
∞∑

α=−∞
AnαFα − ξFn,x − ηFn,y −

∞∑
α=−∞

( ∞∑
β=−∞

Aαβuβ +Bα

)
Fn,uα = 0

(2.6)

whereFn,uα is the derivative ofFn with respect to the variableuα.
Let us now specify the functionFn to be a sum of exponentials as in equation (1.1).

There are three types of terms in equation (2.6): those independent ofun, linear inun times
exponentials and pure exponentials. Each type of term must vanish separately. SinceH has
no zero rows we obtain the determining equations

Bn,xy = 0 (2.7)

∞∑
α=−∞

AαmFn,uα = 0 (2.8)

−(ξx + ηy)Fn +
∞∑

α=−∞
AnαFα −

∞∑
α=−∞

BαFn,uα = 0. (2.9)

Equation (2.8) can be rewritten as∑
αβ

KnβHβαAαm exp

(∑
γ

Hβγ uγ

)
= 0. (2.10)

All exponentials in equation (2.10) are linearly independent (since all rows inH are different),
so the equation must hold for eachβ separately and the exponentials can be dropped. Moreover,
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the factorKnβ can be dropped (sinceK has no zero column). We find that equation (2.8) in
this case implies an equation for the matrixA, namely

∞∑
α=−∞

HnαAαm = 0 (2.11)

or in matrix formHA = 0 (however, the matrices are infinite).
Let us now turn to equation (2.9) and make use of the finite range of the interactionFn in

equation (1.1). We have

∂Fn

∂uk
= 0 n + nu < k or k < n− nd (2.12)

for some non-negative integersnu and nd . In equation (2.9) all exponentials, obtained
after substituting forFn from equation (1.1), are linearly independent. This allows us
to split equation (2.9) into two types of equations. These are obtained as coefficients of
exp

(∑
l Hmlul

)
, withm ∈ [n−n1, n+n2] and withm outside this interval, respectively. Thus

we have

−Knm
[
(ξx + ηy) +

m+n4∑
α=m−n3

BαHmα

]
+

m+n2∑
ρ=m−n1

AnρKρm = 0 m ∈ [n− n1, n + n2]

(2.13)
m+n2∑

ρ=m−n1

AnρKρm = 0 m 6∈ [n− n1, n + n2]. (2.14)

We shall show that equation (2.14) actually holds for all values ofm so that equation (2.13)
can be simplified. To do this, we view equation (2.11) as a difference equation forAαm. To
make this explicit we restrictH andK to be band matrices, with finite bands of constant width

Hnm = Hn,n+σ =
{
hσ (n) σ ∈ [p1, p2]

0 σ 6∈ [p1, p2]
hp1(n) 6= 0 hp2(n) 6= 0. (2.15)

Similarly,

Knm = Km+σ,m =
{
kσ (m) σ ∈ [q1, q2]

0 σ 6∈ [q1, q2]
kq1(m) 6= 0 kq2(m) 6= 0. (2.16)

In these notation we see that equation (2.11) is a linear difference equation forAσm with
p1− p2 + 1 terms,

p2∑
σ=p1

hσ (n)Aσ+n,m = 0. (2.17)

Equation (2.17) determines the dependence ofAnm onn. Indeed, the linear difference equation
p2∑

σ=p1

hσ (n)ψσ+n = 0 (2.18)

has p2 − p1 linearly independent solutions, a basis of which we denote by
{
ψ
j
n , j =

1, 2, . . . , p2 − p1
}
. Thus, we have

Anm =
p2−p1∑
j=1

ψj
nCjm (2.19)
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whereCjm are constants to be determined by the remaining determining equations (2.13) and
(2.14). In order to analyse them, let us define the quantities

Qnm =
m+n2∑

σ=m−n1

AnσKσm.

From equation (2.14) we haveQnm = 0 for m ‘sufficiently far away’ fromn. However, by
using the expansion (2.19), we obtain

Qnm =
p2−p1∑
j=1

ψj
n

m+n2∑
σ=m−n1

CjσKσm

which, because of the linear independence of theψ
j
n , implies

m+n2∑
σ=m−n1

CjσKσm = 0 (2.20)

for all values ofm, since this relation does not depend onn and the indexm is no longer tied
to n. In other words, ifQnm = 0 holds for certain values ofn andm, as in equation (2.14),
then that equation must hold for all values. As in the case of equation (2.17), we introduce a
solution basis

{
φlm, l = 1, . . . , q2 − q1

}
for the equation

q2∑
σ=q1

kσ (m) φσ+m = 0. (2.21)

The general solution of equation (2.20) is now

Cjm =
q2−q1∑
l=1

qjl φ
l
m

whereqjl are arbitrary constants. The expression (2.19) forAnm is replaced by

Anm =
p2−p1∑
j=1

q2−q1∑
l=1

qjl ψ
j
nφ

l
m. (2.22)

A further consequence is that the last term in equation (2.13) can be dropped. Then, using the
general solution for equation (2.7)

Bn(x, y) = βn(x) + γn(y)

we separate thex from they dependence in equation (2.13) and reduce it to two inhomogeneous
difference equations forβn(x) andγn(y). The general solutions of which are

βn(x) =
p2−p1∑
j=1

rj (x) ψ
j
n − bnξx(x) γn(x) =

p2−p1∑
j=1

sj (y) ψ
j
n − bnηy(y) (2.23)

wherebn is an arbitrarily chosen solution of the inhomogeneous difference equation

p2∑
σ=p1

hσ (n) bσ+n = 1. (2.24)

Furthermore, in equation (2.23) the functionsrj (x) andsj (y) are chosen arbitrarily. Finally,
we obtain the following theorem.
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Theorem 1. Consider all the generalized Toda theories of the form (1.1) for infinitely many
fieldsun(x, y), where the coupling matricesH andK satisfy equations (2.15) and (2.16).
Their Lie point symmetry algebra is infinite dimensional and a basis for it is given by the
following vector fields:

X̂(ξ) = ξ(x)∂x − ξx(x)
∞∑

n=−∞
bn∂un Ŷ (η) = η(y)∂y − ηy(y)

∞∑
n=−∞

bn∂un (2.25)

Ûj (rj ) = rj (x)
∞∑

n=−∞
ψj
n ∂un V̂j (sj ) = sj (y)

∞∑
n=−∞

ψj
n ∂un (j = 1, . . . , p2 − p1)

(2.26)

Ẑjl =
( ∞∑
m=−∞

φlmum

)( ∞∑
n=−∞

ψj
n ∂un

)
(j = 1, . . . , p2 − p1; l = 1, . . . , q2 − q1).

(2.27)

The functionsξ(x), η(y), rj (x) andsj (y) are arbitrary, all the other quantities are determined
by solving the linear difference equations (2.18), (2.21) and (2.24).

As far as interpretation is concerned, we see that the generalized∞-Toda lattice (1.1) is always
conformally invariant, since the vector fields (2.25) generate arbitrary reparametrizations of
x andy, accompanied by appropriate transformations of the fieldsun. More specifically, the
conformal transformations leaving equation (1.1) invariant are

x̃ = ψ(x, λ) ỹ = χ(y, λ)

ũn(x̃, ỹ) = un(x, y)− bn ln

(
dψ

dx

dχ

dy

) (2.28)

whereψ(x, λ) andχ(y, λ) are arbitrary functions ofx andy, related toξ(x) andη(y) by the
relations

x̃ = ψ(x, λ) = T −1(λ + T (x))

ỹ = χ(y, λ) = S−1(λ + S(y))
(2.29)

with

T (x) =
∫ x

0

ds

ξ(s)
S(y) =

∫ y

0

dt

η(t)
. (2.30)

The vector fieldsÛj (r) andV̂j (s) generate gauge transformations: certain functions obtained
by integrating the vector fields can be added to any solution. Formally, the operatorsẐjl
generate linear transformations among components of solutions. However, the sums are over
an infinite range, so convergence problems may arise. Moreover, we have

∂xy

(∑
m

φlmum

)
= 0 (2.31)

as a consequence of equation (2.21). In other words, if equation (2.21) admits non-trivial
solutions, than one can always perform a linear transformation among theun’s, in such a way
thatq2− q1 new fieldsvl =

∑
m φ

l
mum, satisfying the wave equation∂x∂yvl = 0, are replaced

in the Toda system.
As stated in theorem 1, the problem of finding all symmetries of equation (1.1) reduces to

solving the recursion relations (2.18), (2.21) and (2.24). In general, this may not be possible
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analytically in closed form. Well developed techniques exist for solving homogeneous and
inhomogeneous difference equations with constant coefficients [32, 33]. This is the case that
occurs for all generalized Toda field theories that we found in the literature:hσ (n) andkσ (m)
do not depend onn andm, respectively. The non-zero commutation relations for the symmetry
algebra of the generalized∞-Toda theory (1.1) are:

[X̂(ξ1), X̂(ξ2)] = X̂(ξ1 ξ2,x − ξ1,x ξ2) [Ŷ (η1), Ŷ (η2)] = Ŷ (η1 η2,y − η1,y η2)

[X̂(ξ), Ûj (r)] = Ûj (ξrx) [Ŷ (η), V̂j (s)] = V̂j (ηsy)

[X̂(ξ), Ẑjl ] = −Ûj
(
ξx
∑
n

bnφ
l
n

)
[Ŷ (η), Ẑjl ] = −V̂j

(
ηy
∑
n

bnφ
l
n

)

[Ûa(r), Ẑjl ] = Ûj
(
r
∑
m

φlmψ
a
m

)
[V̂a(s), Ẑjl ] = V̂j

(
s
∑
m

φlmψ
a
m

)

[Ẑab, Ẑcd ] =
(∑

m

φdmψ
a
m

)
Ẑcb −

(∑
m

φbmψ
c
m

)
Ẑad .

(2.32)

The algebra of vector fieldŝZjl is finite dimensional (its dimension isd = (p2−p1)×(q2−q1)).
However, its isomorphism class cannot be determined without specifying the functionsφlm and
ψ
j
n , i.e. the matricesH andK in (1.1). In all examples in the literature, we have eitherd = 1

or 0. It is, however, easy to invent examples in which{Ẑjl} is simple, semisimple, solvable or
whatever we postulatea priori.

The overall structure of the obtained Lie algebra is

({X̂} ⊕ {Ŷ }) +⊃ ({Ẑ} +⊃ (Û ⊕ V̂ )). (2.33)

If {Ẑ} is solvable, then (2.33) amounts to a Levi decomposition, since both{X̂} and{Ŷ }
are centreless Virasoro algebras and hence simple. We recall that the Levi theorem does not
hold for infinite-dimensional Lie algebras and a Levi decomposition does not necessarily exist.

Let us sum up the general results obtained so far for the symmetries of the generalized
∞-Toda field theories (1.1) under the constraints imposed in theorem 1.

(a) The theory is always conformally invariant, since the inhomogeneous equation (2.24)
always has a solution.

(b) The theory allows gauge transformationsÛ andV̂ if p2 − p1 > 1.
(c) The transformations of typêZ exist if (p2 − p1)(q2 − q1) > 1.

2.2. Special cases

2.2.1. The Mikhailov–Fordy–Gibbons two-dimensional∞-Toda system (1.2).We have

h−1(n) = −h0(n) = 1 and k−1(n) = −k0(n) = −1 (2.34)

sop2 − p1 = q2 − q1 = 1. From equations (2.18) and (2.21) we have

ψm = φm = 1.

Equations (2.23) and (2.24) in this case imply

βn = β(x) + nξx γn = γ (y) + nηy.
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From theorem 1 we now obtain all symmetries of equation (1.2), namely

X̂(ξ) = ξ(x)∂x + ξx
∞∑

n=−∞
n∂un Ŷ (η) = η(y)∂y + ηy

∞∑
n=−∞

n∂un

Û = β(x)
∞∑

n=−∞
∂un V̂ = γ (y)

∞∑
n=−∞

∂un

Ẑ =
( ∞∑
m=−∞

um

)( ∞∑
n=−∞

∂un

)
.

(2.35)

The generatorŝX, Ŷ , Û andV̂ were obtained in [21] using the so-called ‘intrinsic method’.
The generator̂Z was not obtained there and cannot be obtained by the intrinsic method.

2.2.2. The Toda field theory (1.3).We takeH = I . Then equations (2.18), (2.21) and (2.24)
in this case imply

βm = −ξx γm = −ηy Anm = 0.

The theory is only conformally invariant

X̂(ξ) = ξ(x)∂x − ξx
∑
n

∂un Ŷ (η) = η(y)∂y − ηy
∑
n

∂un (2.36)

and no further symmetries are obtained.

2.2.3. The Toda field theories (1.4).We takeK = I and relation (2.21) implies

Anm = 0.

The remaining equations (2.24) cannot be solved explicitly for generalhσ (m), but as mentioned
above, we can easily deal with in the constant coefficients case. As an example, let us restrict
to the case whenH is theA∞ Cartan matrix (this is theAN Cartan matrix forN →∞, where
the limit is taken symmetrically from a fixed, but not extremal, vertex in the corresponding
Dynkin diagram). Thus we have

h−1 = h+1 = −1 h0 = 2 (2.37)

the solutions (2.23) become

βn = 1
2n

2 ξx + n r2(x) + r1(x) γn = 1
2n

2 ηy + n s2(y) + s1(y). (2.38)

The symmetry algebra is

X̂(ξ) = ξ(x)∂x + 1
2ξx

∞∑
n=−∞

n2∂un Ŷ (η) = η(y)∂y + 1
2ηy

∞∑
n=−∞

n2∂un

Û1(r1) = r1(x)
∞∑

n=−∞
∂un V̂1(s1) = s1(y)

∞∑
n=−∞

∂un

Û2(r2) = r2(x)
∞∑

n=−∞
n ∂un V̂2(s2) = s2(y)

∞∑
n=−∞

n∂un

(2.39)

whereξ(x), η(y), r1(x), s1(y), r2(x) ands2(y) are arbitrary smooth functions.
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3. Symmetries of finite generalized Toda field theories

3.1. General results

In this case we have a system ofN partial differential equations inN fieldsun(x, y), namely

un,xy = Fn Fn =
M∑
m=1

Knm exp

(
N∑
l=1

Hmlul

)
(16 n 6 N). (3.1)

The ‘coupling constant’ matricesH andK satisfyH ∈ RM×N andK ∈ RN×M . The system
(3.1) could arise in a quite general field theory with the Lagrangian

L = 1
2

N∑
m,n=1

κmn∂xum∂yun −
M∑
m=1

cm exp

(
N∑
l=1

Hmlul

)
(cm 6= 0) (3.2)

with

K = L−1HTC L = 1
2(κ + κT ) C = diag(c1, . . . , cN). (3.3)

Some general considerations concerning the system (3.1) are in order.
First, if eitherK orH (or both) allow an inverse, or at least a left inverse, then this system

can be simplified. Indeed, letK−1 exist. We putun =
∑

m Knmρm and obtain

ρm,xy = exp

(
M∑
l=1

(HK)mlρl

)
16 m 6 M. (3.4)

Conversely, letH−1 exist and putwj =
∑

l Hjlul , we obtain

wm,xy =
M∑
j=1

(HK)mje
wj 16 m 6 M. (3.5)

In other words, one of the matricesH orK can be normalized toIM , if it is left invertible.
The second comment is that the system (3.1) withK = I admits Lie–B̈acklund

transformations, and in this sense is completely integrable, if the matrixH is a Cartan, or
a generalized Cartan matrix [19].

We mention that in the case of the infinite Toda field theories the matricesH andK in
general have non-trivial kernels, are hence not invertible and we cannot normalize them.

Let us now turn to the Lie point symmetries of the system (3.1). We write a general
element of the symmetry algebra in the form (2.2) (with the sum in the range 16 n 6 N ),
apply its prolongation to equation (3.1) as in equation (2.4). From the determining equations
we find that for anyFn in equation (3.1), in complete analogy with the∞-Toda theory, a
general element of the symmetry algebra will have the form (2.5), the summation being from
1 toN .

Two determining equations remain and they depend on the specific form ofFn in
equation (3.1). Making use of the fact that all the exponentials are linearly independent (no
two rows inH coincide) and that the matrixK has no zero column, we reduce the remaining
determining equations to two matrix relations

HA = 0 (3.6)

[(A− (ξx + ηy)I )K]nm = Knm(HB)m (16 n 6 N, 16 m 6 M). (3.7)

We multiply equation (3.7) byH from the left and use (3.6) to obtain

−(ξx + ηy)(HK)km = (HK)km(HB)m ∀k,m. (3.8)
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If the matrixHK has no zero column, then we obtain

HB = −(ξx + ηy)1̄M (3.9)

where1̄M = (1, . . . ,1)T ∈ RM , and from equation (3.7)

AK = 0. (3.10)

Thus, matrixA must satisfy the same two homogeneous equations (3.6) and (3.10) as in the
infinite case. Furthermore, if̄1M is in the image ofH , then we definebN ∈ RN to be an
arbitrarily chosen (but specified) solution of the inhomogeneous equation

HbN = 1̄M . (3.11)

The results of these considerations can be summed up as follows.

Theorem 2. Consider the generalized Toda field theories (3.1) with a finite number of fields
N . Assume that all rows inH are different and that the matrixH K has no zero column. Then
three types of symmetries can occur and they depend on the properties of the fundamental
spaces of the matricesH andK. The symmetries are of the same form as in theorem 1, except
that all summations range from 1 toN . However, if1̄M ∈ Im(H), thenξ andη are arbitrary
functions ofx andy, respectively, and the theory is conformally invariant. The quantitiesbn
are the components of the vectorbN , itself an arbitrary solution of equation (3.11). Otherwise,
if 1̄M 6∈ Im(H), the theory is invariant only under the Poincaré group, generated by

P̂1 = ∂x P̂2 = ∂y L̂ = x∂x − y∂y. (3.12)

Gauge transformations exist only ifH is not invertible. Analogously to the formulae (2.26),rj
andsj are arbitrary functions and the vectorsψj spanKer(H). Finally, the vectorsφl span
the left kernel ofK. If this space is not zero, thendim

(
Ker

(
KT

))×dim(Ker(H)) symmetries
of the form (2.27) are admitted.

From theorem 2, in contrast to the case of infinitely many fields, conformal invariance is not
a priori guaranteed, but it imposes restrictions on the image ofH . Gauge symmetries exist
only if the matrixH has a non-zero kernel.

3.2. Special cases

3.2.1. The Mikhailov–Fordy–Gibbons Toda theory and generalizations.Consider the field
equation

Uxy = µ2

β

N∑
i=1

αi

α2
i

exp(βαi ·U) (3.13)

whereU = (u1, . . . , uN) is anN -ple of real fields and(α1, . . . ,αN) denote the simple roots
of a classical simple finite Lie algebra. Equations (3.13) above take the form (1.2) for alln

satisfyingN0 6 n 6 N − 1. Forn = N we obtain

uN,xy = exp(uN−1− uN). (3.14)

The equations for 16 n < N0 are different for each Cartan series. The numberN0 is equal to
2 forAN,BN,CN , and 3 forDN .

For theAN algebra we have

u1,xy = −exp(u1− u2). (3.15)
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Conformal and gauge transformations are exactly the same as given in equation (2.35) (except
that the summations are from 1 toN ).

For theBN algebra we have

u1,xy = exp(−u1)− exp(u1− u2). (3.16)

Conformal transformations are as in equation (2.35) (with the same comment about the
summations) and there is no gauge invariance.

For theCN algebra we have

u1,xy = −exp(u1− u2) + 2 exp(−2u1). (3.17)

The only symmetry is conformal invariance, generated by

X̂(ξ) = ξ(x)∂x + ξx
N∑
n=1

(
n− 1

2

)
∂un

Ŷ (η) = η(y)∂y + ηy
N∑
n=1

(
n− 1

2

)
∂un .

(3.18)

Finally, for theDN algebra we have

u1,xy = exp(−u1− u2)− exp(u1− u2)

u2,xy = exp(−u1− u2) + exp(u1− u2)− exp(u2 − u3).
(3.19)

Again, the only symmetry is conformal invariance, in this case generated by

X̂(ξ) = ξ(x)∂x + ξx
N∑
n=1

(n− 1)∂un

Ŷ (η) = η(y)∂y + ηy
N∑
n=1

(n− 1)∂un .

(3.20)

We mention that the infinite system (1.2) can also be reduced to the finite one by imposing
periodicityuN+1 = u1. In this casē1N is not contained in Im(H) and there is no conformal
invariance. Thus, the symmetry is given by the two-dimensional Poincaré algebra (3.12) and
by the gauge generators given in (2.35).

3.2.2. The Toda field theory (1.3).The symmetries are the same in the finite case as in the
infinite one, namely the conformal transformations generated by (2.36) (for any finite matrix
k).

3.2.3. The finite Toda theories (1.4).Since the Cartan matrixH is invertible, this theory is
equivalent to that described by equation (1.3) in the sense of equations (3.4) and (3.5). Hence
this theory is always and only conformally invariant. However, the generators of the vector
fields take a slightly different form, which we report for a subsequent discussion.

For theAN algebra the generators are given by

Ŵ = ξ(x)∂x + η(y)∂y + 1
2(ξx + ηy)

N∑
n=1

n(n−N − 1)∂un . (3.21)
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For theBN algebra, the symmetry generator is given by

Ŵ = ξ(x)∂x + η(y)∂y − 1
4(ξx + ηy)

{
N(N + 1)∂u1 + 2

N∑
n=2

[N(N + 1)− n(n− 1)]∂un

}
.

(3.22)

For theCN algebra, the symmetry generator is given by

Ŵ = ξ(x)∂x + η(y)∂y + 1
2(ξx + ηy)

N∑
n=1

[
n(n− 2)−N2 + 1

]
∂un . (3.23)

Finally, for theDN algebra (N > 4), one has

Ŵ = ξ(x)∂x + η(y)∂y − 1
4(ξx + ηy)

{
N(N − 1)(∂u1 + ∂u2)

+2
N∑
n=3

[N(N − 1)− (n− 2)(n− 1)]∂un

}
. (3.24)

4. Symmetries of generalized semi-infinite Toda field theories

4.1. General results

Let us now restrict the range of the discrete variablen to be 16 n <∞. Both the equations
(1.1) of the generalized Toda field theories, and their symmetries will be modified. The matrices
H andK will no longer be pure band matrices but will have the form

H =

H1,1 . . . . . . . . . H1,N

. . . . . . . . . . . . . . .

HM,1 . . . . . . . . . HM,N

HM+1,M+1+p1 . . . . . . . . . . . . HM+1,M+1+p2

HM+2,M+2+p1 . . . . . . . . . . . . . . . HM+2,M+2+p2

. . . . . .
. . .

. . .
. . .


(4.1)

whereM + p1 6 N 6 M + p2 and the void entries are equal to zero. Similarly, the matrixK

takes the form

K =



K1,1 . . . K1,N ′

. . . . . . . . . KN ′+1+q1,N ′+1

KM ′,1 . . . KM ′,N ′ . . . KN ′+2+q1,N ′+2

. . . . . .
. . .

KN ′+1+q2,N ′+1 . . .
. . .

KN ′+2+q2,N ′+2
. . .

. . .


(4.2)
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whereN ′+q1 6 M ′ 6 N ′+q2. Although one could easily construct non-trivial models, which
do not fit in the given scheme, they seem quite artificial and, moreover, all the cases which we
found in the literature satisfy the above restrictions.

We denote byH̃ andK̃, respectively, theM × N andM ′ × N ′ matrices, which can be
extracted by taking the firstM rows and the firstN columns fromH and, in turn, the firstM ′

rows and the firstN ′ columns fromK.
The symmetry algebra of the semi-infinite Toda field theory equation can either be obtained

directly,ab initio, or we can obtain it from the infinite case of section 2, by adding appropriate
boundary conditions and requiring that they be invariant. As above, the functionsξ(x), η(y),
Amn andBn(x, y) must satisfy the remaining determining equations (2.7)–(2.9). Following
the same reasoning as in the finite case (see section 3), we obtain the analogues of all the
relations (3.6)–(3.10), where now all the labels and summations range from 1 to∞ (i.e. we
takeN → ∞ in all formulae). The key equation of the discussion is equation (3.9) and its
associated homogeneous system. Here, we separate the problem into the finite subsystems

H̃ B̃ = 0 (4.3)

H̃ B̃ = −(ξx + ηy)1̄M (4.4)

whereB̃ = (B1, . . . , BN), and a difference linear equation, which we can put again in the
form (2.18) or (2.24), respectively, forn > M + 1. Equation (4.3) has Ker(H̃ ) as its solution
space. On the other hand, the difference equation (2.18) has a(p2−p1)-dimensional solution
space, the elements of which have the form

Bn =
p2−p1∑
j=1

αjψ
j
n n > M + 1 +p1 (4.5)

in terms of the basis
{
ψ
j
n

}
. Moreover, the difference equation (2.18) has only the zero solution

in the casep1 = p2. However, because of the imposed restrictions on the form ofH , in
such a case the components of the vectorB̃ are decoupled from the remaining(BN+1, . . .).
This means that the semi-infinite homogeneous linear systemHB = 0 has a zero-dimensional
kernel only if both the finite system (4.3) and the homogeneous difference equation (2.18) do.

Assuming now thatp1 < p2 and, moreover, thatM + p1 + 1 6 N , the components
(BM+1+p1, . . . , BN) have to satisfy both the finite linear equation (4.3) and the difference
equation (2.18). Substituting the representation (4.5) into (4.3), we obtainN − dim(Ker(H̃ ))
constraints on the{αi}i=1,...,p2−p1. Thus, if it results that

M −N + p2 + dim(Ker(H̃ )) = n0 > 0 (4.6)

then the semi-infinite homogeneous systemHB = 0 admits ann0-dimensional kernel, spanned
by the set of linearly independent functions

{
χ
j
n

}
j=1,...,n0

.
The above result implies that, if the constraint (4.6) holds, then the semi-infinite Toda

model defined by (4.1) and (4.2) possesses a symmetry group of gauge transformations,
generated by the 2× n0 vector fields

Ûj (rj ) = rj (x)
∞∑
n=1

χjn ∂un V̂j (sj ) = sj (y)
∞∑
n=1

χjn ∂un (j = 1, . . . , p2 − p1). (4.7)

As in the finite case, a semi-infinite theory is conformally invariant if the inhomogeneous
equation (3.9) (for semi-infinite matrices) has a solution. Thus, now we must require that the
vector 1̄ = (1, 1, . . .) be contained in Im(H). However, as outlined above, the problem is
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reduced to finding a solution of the equation (4.4) and of the difference equation (2.24). The
former equation is solved if

1̄M ∈ Im(H̃ ). (4.8)

For the difference equation (2.24) a solution always exists as seen in section 2. Hence the
structure of the matrixH shown in (4.1) guarantees that a solution of the total inhomogeneous
system always exists, once equation (4.8) is satisfied here. In conclusion, the condition (4.8)
is not only necessary, but also sufficient to ensure the conformal invariance of the given Toda
theories.

Finally, an analysis similar to the study of the gauge invariance can be performed for theẐ-
type transformations, which exist if a common solution of the two semi-infinite homogeneous
systems

HA = 0 AK = 0 (4.9)

can be found. Thus, we are led to the following theorem.

Theorem 3. Consider the semi-infinite Toda field theory (1.1), withH andK given by (4.1) and
(4.2), respectively, and with all rows ofH different. Moreover, letHK have no zero columns.
Then, the symmetry algebra depends on the fundamental spaces of the finite-dimensional
submatricesH̃ and K̃, on the solutions of the difference equations (2.18) and (2.24) for
n > M + 1 and, finally, on the solutions of the difference equation (2.21) form > N ′ + 1.

The theory is conformally invariant if the condition (4.8) holds. The corresponding
generators take the form (2.25). Otherwise, if (4.8) does not hold, the symmetry reduces
to the Poincaŕe group generated by (3.12).

A gauge transformation group, involving2n0 arbitrary functions of one variable, exists
if the relation (4.6) holds. The algebra generators take the form (4.7). Finally,Ẑ-type gauge
transformations exist if not only (4.6) holds, but also the supplementary condition

N ′ −M ′ + q2 + dim
(
Ker

(
K̃T

)) = m0 > 0 (4.10)

is satisfied. In such a case they form a Lie algebra of dimensionm0 × n0.

4.2. Special cases

Now let us consider the same three examples as in the previous sections.

4.2.1. Mikhailov–Fordy–Gibbons field theories.All examples of section 3.2 can be
generalized to the semi-infinite case, simply allowingN to go to∞ for each classical Lie
algebra. The equations labelled by 16 n 6 N0 are given explicitly by (3.15)–(3.17) and
(3.19), respectively. Moreover, fori > N0 the equations are the same as in the infinite case,
i.e. equation (1.2).

For theA∞+ algebra (we use this notation in order to distinguish this semi-infinite model
from the previously introducedA∞ infinite one), we haveM = N = M ′ = N ′ = 0 and hence
the symmetries are exactly the same as in the infinite and in the finite cases (see equation (2.35)),
where the summations are over the appropriate range.

For theB∞ algebra one has̃H = −K̃ = (−1), then alsoM = N = M ′ = N ′ = 1, as one
can see from (3.16). Theorem 3 allows one to establish that there are no gauge transformations
of any kind and the generators of the conformal transformations are the same as given in (2.35).

From equation (3.17) one sees thatH̃ = −K̃ = (−2) for the C∞ algebra, then
M = N = M ′ = N ′ = 1. Thus, theorem 3 establishes that only the conformal invariance
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is admitted. Its generators have the same form as in equation (3.18), where the summation is
over the positive integers.

Finally, for theD∞ algebra one has

H̃ =
(
−1 −1

1 −1

)
= −K̃T .

Theorem 3 implies that only conformal transformations leave the system invariant and their
generators are obtained by taking the limitN →∞ in the formulae (3.20).

4.2.2. The semi-infinite Toda field theory (1.3).The discussion is very simple. Indeed, since
H is the identity matrix, there are no gauge transformations. Moreover, the generators of the
conformal transformations in the infinite, semi-infinite and finite cases always take the same
form (2.36), where the summations are over the appropriate range.

4.2.3. The semi-infinite Toda field theories (1.4).As opposed to the finite case, the matrixH
is no longer invertible, so now these theories are not equivalent to those given by (1.3).

First, we observe that, sinceK is the identity matrix, there are nôZ-type transformations.
For any classical Lie algebra, extended toN →∞, the recursive part of the systems, i.e. the
equations labelled byn > N0 as defined in section 3.2, are always the same as in the infinite
case discussed in section 2.2.3. The solution of the corresponding difference equations for
Bn (n > N0), that is (2.18) and (2.24), are the same as in (2.38) and the generators are as in
(2.39). However, for 16 n < N0 the equations provide constraints of the form (4.3) and (4.4).
The application of theorem 3 implies

(a) All the semi-infinite systems (1.4) are conformally invariant.
(b) All the semi-infinite systems (1.4) haven0 = 1, as defined in (4.6), hence a gauge

transformation algebra of the form (4.7) exists, withj = 1.

In theA∞+ case theX̂ andŶ conformal symmetries survive as in equation (2.39), and so
do Û2 andV̂2. However, the symmetrieŝU1 andV̂1 are no longer present.

In theB∞ case the generatorŝX, Ŷ andÛ2, V̂2 combine together to give the new conformal
symmetry generators,

X̂ = ξ(x)∂x + 1
2ξx

∞∑
n=1

n(n− 1)∂un Ŷ = η(y)∂y + 1
2ηy

∞∑
n=1

n(n− 1)∂un . (4.11)

The remaining gauge invariance is generated by

Û (r) = r(x)
[
∂u1 + 2

∞∑
n=2

∂un

]
V̂ (s) = s(y)

[
∂u1 + 2

∞∑
n=2

∂un

]
. (4.12)

For theC∞ algebra the symmetry algebra is

X̂ = ξ(x)∂x + 1
2ξx

∞∑
n=1

n(n− 2)∂un

Ŷ = η(y)∂y + 1
2ηy

∞∑
n=1

n(n− 2)∂un

Û (r) = r(x)
∞∑
n=1

∂un V̂ (s) = s(y)
∞∑
n=1

∂un .

(4.13)
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Finally, for theD∞ algebra one has

X̂ = ξ(x)∂x + 1
2ξx

∞∑
n=1

(n− 1)(n− 2)∂un

Ŷ = η(y)∂y + 1
2ηy

∞∑
n=1

(n− 1)(n− 2)∂un

Û (r) = r(x)
[
∂u1 + ∂u2 + 2

∞∑
n=3

∂un

]

V̂ (s) = s(y)
[
∂u1 + ∂u2 + 2

∞∑
n=3

∂un

]
.

(4.14)

The formulae for the semi-infinite models (1.4) are consistent with those obtained in the finite
case in section 3.2.3. The generators of the conformal invariance, in each case, are simply
obtainable by dropping all terms involvingN . Conversely, the terms proportional to a power of
N provide us with the gauge invariance generators in the semi-infinite extensions. In this limit,
the functionsr = ξx ands = ηy must be considered as new linearly independent functions.

5. Conclusions

We have introduced the generalized Toda system (1.1) and investigated its Lie point symmetry
group. It turned out that in the infinite case(−∞ < n < ∞) these systems are always
invariant under an infinite-dimensional group of conformal transformations. It is also gauge
invariant, if a certain homogeneous linear difference equation (i.e. equation (2.18)) has non-
trivial solutions. Further gauge transformations exist if another linear homogeneous difference
equation (i.e. equation (2.21)) also has non-trivial solutions.

If we restrict the range ofn to 16 n < ∞, in some cases the symmetry group remains
the same, or is reduced to a subgroup of the original symmetry group. However, in other cases
(see (4.12) and (4.14)) the symmetry group does not coincide with a Lie subgroup.

In the finite case, with 16 n 6 N , the symmetry group remains the same as in the
semi-infinite case, or it is reduced further.

In some situations (see theorems 2 and 3) the infinite-dimensional conformal symmetry
group is reduced to the Poincaré group in two dimensions (see equation (3.12)).

These results were obtained directly, that is by analysing the determining equations for the
symmetries for all types of systems: infinite, semi-infinite and finite. The question to which
we plan to devote a separate paper is the application of the infinite generalized Toda systems.
In particular, we will establish the degree to which the symmetries of the semi-infinite and
finite Toda systems are ‘inherited’ from those of the infinite systems. In other words, we plan
to discuss symmetry breaking by boundary or periodicity conditions of the infinite chains.

One of the surprising results obtained in this paper is that the class of the conformally
invariant Toda field theories is much larger than the class of the completely integrable models.
Indeed, the existence of a Lax pair imposes severe algebraic restrictions on the matricesH and
K (see, for instance, [19]).
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