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Abstract. A class of two-dimensional field theories with exponential interactions is introduced.

The interaction depends on two ‘coupling’ matrices and is sufficiently general to include all Toda
field theories existing in the literature. Lie point symmetries of these theories are found for an
infinite, semi-infinite and finite number of fields. Special attention is accorded to conformal
invariance and its breaking.

1. Introduction

The purpose of this paper is to investigate the Lie point symmetries of a large class of
‘generalized Toda field theories’. The class is characterized by the equation

n+np m+ng
Uny = Fy Fo= Y K,lmexp< > Hm,u,> (1.2)
!

m=n—ny =m—n3

whereK and H are some real constant matrices and. .., nq are some finite non-negative
integers. The range af may be infinite, semi-infinite or finite, hence the matrigésnd H
may also be infinite, semi-infinite or finite.

If the range of: is finite, K andH may be rectangular, not necessarily square. We assume
that all the rows inH are different, thati contains no zero rows arid no zero columns. In all
the cases we assume that the range of the interaction on the right-hand side of equation (1.1) is
finite, hence the finite summation limits in both sums. ‘Generalized Toda lattices’ are obtained
from equation (1.1) by symmetry reduction, using translational invariance, i.e. restricting to
solutions of the formx, (x, y) = w,(t) wherer = x + Ay.

Toda lattices, their generalizations and Toda field theories represent one of the most
interesting, rich and fruitful developments in the realm of completely integrable systems.
The original Toda lattice was introduced by Toda [1, 2] who found analytical solitons and
periodic solutions in a discrete lattice with an exponential potential involving nearest-neighbour
interactions. It was also found that the Toda lattice admits a Lax representation and all the
usual attributes of integrability [3, 4]. The Toda lattice was generalized to integrable lattices
related to the root systems of simple Lie algebras [5-8]. The considered lattices can be finite,
infinite, semi-infinite or periodic.
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The attractive features of Toda lattices have been generalized to two space dimensions in
several different ways [9-19].

All of them can be recovered from equation (1.1) by specifying the matkcesd H.
Thus, the Mikhailov—Fordy—Gibbons field theories [9, 10] (for infinitely many fields)

iy gy = € g (1.2)

are obtained by puttingf,,, 1 — H,, = 1, K,, = —K,,,+1 = 1 and all other components to
zero. A class of Toda field theories

n+ny

Uny = Y Kun€" (1.3)

m=n—ni

studied by Leznov and Saveliev [12, 13], Olive, Turok and others [14—17] (usually for a finite
number of fields:,,) are obtained by settingf = I and takingK to be the Cartan matrix of a
semisimple Lie algebra (or an affine one).

A further class of Toda field theories, also studied by Leznov and Saveliev [13, 14], Bilal
and Gervais [17], and Babelon and Bonora [18] (for a finite number of fields) can be written
as

m+ny

Up,xy = EXP Z Hyuy (1.4)

I=m—n3

and is obtained by taking = I andH as a Cartan matrix.

In this paper we will be interested in point symmetries of the system (1.1), rather than
in questions of integrability or explicit solutions. The symmetries we are interested in will
include conformal invariance, whenever it is present, and gauge invariance, if not, however,
higher, or generalized symmetries, be they local, or not.

In section 2 we consider infinite Toda field theories, i.e. take < n < oco. In this case
equation (1.1) can be viewed as a differential-difference equation. Continuous Lie symmetries
of such equations have been studied using several different approaches [20—29]. We shall
follow that of [20—24], using both the ‘intrinsic method’ and the ‘differential equation method’
[21].

In section 3 we turn to finite Toda field theories, when we have & < N < oo in
equation (1.1). Equation (1.1) in this case represents a systahdifferential equations and
its point symmetries can be obtained in a standard manner [30, 31]. We first obtain general
results, and then specify the matridédsand K in several different ways.

Section 4 is devoted to semi-infinite Toda field theories, i.€. 8 < co. Again we first
obtain general results, and then specify the matriéend K, enforcing the cut-off at = 0
in several different ways.

Some conclusions are drawn in section 5.

2. Symmetries of generalizedo-Toda field theories

2.1. General results

Let us consider equation (1.1) within the range-oco < n < co. We follow the ‘differential
equation method’ described in [21] and look for transformations of the form

X = AgX, (ue)) ity = Q. n, {ur}) i=n (2.1)
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where we have used the notatisn= (x, y), x = (&, ), taking solutions of equation (1.1)
into solutions. The notatiofu,} indicates that the new variables can depend on all the fields

{urtkez.
The Lie group transformation (2.1) is generated by a Lie algebra of vector fields of the
form

=&, y, fweD)ds +n(x, y, e h)dy + Y i (x, v, {weh)d,- (2.2)

j=00

The prolongation of this vector field is constructed in the same manner as for differential
equations [30, 31] (albeit an infinite system of them). For a general equation of the form

E, = Up,xy — Fn(xa Y, {uk}) =0 (23)
we require
pr@0E,|g,—0=0. (2.4)

It was shown quite generally [21] that for equation (2.3) wkh any sufficiently smooth
function depending on at least one functiop k& # n, the vector field (2.2) satisfying
equation (2.4) will have the form

o0
§=£&x n=n(y) $n= Y Awti * By(x.y) (2.5)
k=—o00
whereA = {A,,} is a constant (infinite) matrix. The functions in equation (2.5) must satisfy
a remaining determining equation, namely

00 00 0
Bn,xy_(§x+77y)Fn+ Z AnaFa_éFn,x_nFn.y_ Z ( Z Aaﬁuﬂ+Ba) Fn,uo, =0
B

a=—00 a=—00 =—00

(2.6)

whereF, ,, is the derivative ofF,, with respect to the variable, .

Let us now specify the functiot, to be a sum of exponentials as in equation (1.1).
There are three types of terms in equation (2.6): those independeptlofear inu, times
exponentials and pure exponentials. Each type of term must vanish separatelyHSiase
no zero rows we obtain the determining equations

By =0 @2.7)
Z Aaan,ua =0 (28)
a=—00
00 00
_(%-x + ny)Fn + Z AnaFoz - Z BotFn,u(x =0. (29)
a=—00 a=—00

Equation (2.8) can be rewritten as

> KupHpo Aam €XP (Z Hﬂyuy> =0. (2.10)
af Y

All exponentials in equation (2.10) are linearly independent (since all rowsare different),
so the equation must hold for eggseparately and the exponentials can be dropped. Moreover,
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the factork,s can be dropped (sinc€ has no zero column). We find that equation (2.8) in
this case implies an equation for the matdixnamely

Z HnaAam =0 (211)
a=—00
or in matrix formH A = 0 (however, the matrices are infinite).
Let us now turn to equation (2.9) and make use of the finite range of the interagtion
equation (1.1). We have

IF,
auk -
for some non-negative integers andn,. In equation (2.9) all exponentials, obtained
after substituting forF,, from equation (1.1), are linearly independent. This allows us
to split equation (2.9) into two types of equations. These are obtained as coefficients of

exp(>", Huui), Withm € [n —ny, n+n] and withm outside this interval, respectively. Thus
we have

0 n+n, <k or k<n-—ny (2.12)

m+ngy m+ny
_Knm (Ex + ny) + Z BaHm(x + Z Anprm =0 m e [n —ni,n +I’l2]

a=m-—n3 p=m-—ny
(2.13)
m+ny
Z AnKpm =0 m ¢ [n—ny,n+ny. (2.14)
p=m—ny

We shall show that equation (2.14) actually holds for all values ab that equation (2.13)
can be simplified. To do this, we view equation (2.11) as a difference equatioh,forTo
make this explicit we restridf andK to be band matrices, with finite bands of constant width

he ,
Hiypy = Hy ey = { m  oelp,pl hp () 0 hy,(n) £0.  (2.15)
0 o ¢ [pls PZ]
Similarly,
{ ka (m) o € [6]1» qZ]
Knm = Km+a,m = kql(m) # 0 qu(m) 75 0 (216)
0 o ¢ [ql9 QZ]

In these notation we see that equation (2.11) is a linear difference equatiary fowith
p1— p2+1lterms,

P2
Z ha (n)A<7+n,m =0. (217)

o=p1

Equation (2.17) determines the dependencg gfonn. Indeed, the linear difference equation

P2
D o () Youn =0 (2.18)

o=p1

has p, — p1 linearly independent solutions, a basis of which we denote{lb,{/,j =
1,2,..., p2 — p1}. Thus, we have

pP2—p1

A= D V|Cin (2.19)
j=1
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whereC,, are constants to be determined by the remaining determining equations (2.13) and
(2.14). In order to analyse them, let us define the quantities

m+n;

Qnm = Z Ano Ko

o=m—ny

From equation (2.14) we hav@,,, = 0 for m ‘sufficiently far away’ fromn. However, by
using the expansion (2.19), we obtain

pP2—p1 m+tny

Qnm = Z W,{ Z CjoKom
j=1 o=m—n1
which, because of the linear independence ofnﬁkfleimplies

m+ny

Y CjoKom=0 (2.20)
o=m—nj
for all values ofin, since this relation does not dependroand the indexz is no longer tied
ton. In other words, ifQ,,, = 0 holds for certain values aof andm, as in equation (2.14),
then that equation must hold for all values. As in the case of equation (2.17), we introduce a

solution basig¢!,, I =1, ..., g> — g1} for the equation
q2
> ko (m) posm = 0. (2.21)
0=q1

The general solution of equation (2.20) is now

q2—q1

ij = Z qji ¢£n
=1

wheregq; are arbitrary constants. The expression (2.194gy is replaced by

p2—P192—q1 )
Anm = Z Z qji Ilfy{(b;lﬂ (222)
j=1 I=1

A further consequence is that the last term in equation (2.13) can be dropped. Then, using the
general solution for equation (2.7)

B”(X, Y) = ﬂn(x) + Vn(y)

we separate thefrom they dependence in equation (2.13) and reduce it to two inhomogeneous
difference equations fg8, (x) andy,(y). The general solutions of which are

pP2—p1 pP2—r1
Bu¥) = Y i)Y —buEc(x) )= D s;(0) Y] = bany(y) (2.23)
j=1 j=1

whereb, is an arbitrarily chosen solution of the inhomogeneous difference equation

p2
> he(m) bgin = 1. (2.24)

o=p1

Furthermore, in equation (2.23) the functiongx) ands;(y) are chosen arbitrarily. Finally,
we obtain the following theorem.
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Theorem 1. Consider all the generalized Toda theories of the form (1.1) for infinitely many
fieldsu, (x, y), where the coupling matriced and K satisfy equations (2.15) and (2.16).
Their Lie point symmetry algebra is infinite dimensional and a basis for it is given by the
following vector fields:

XE) =@ — &) Y bady, Y0 =03y —0y(y) Y bad, (2.25)

n=—0oo n=—0o

Uirp) =rj(x) D ¥id, Vi) =s5;0) D Yoy, (G =1....,pa—p1)

n=—00 n=—00

(2.26)

o0 o0
Z = ( Z ¢£,,Mm)<2 l/f,{aun> (G=1...,pp—pu;l=1...,92—q1).

(2.27)

The functiong (x), n(y), rj(x) ands;(y) are arbitrary, all the other quantities are determined
by solving the linear difference equations (2.18), (2.21) and (2.24).

As far as interpretation is concerned, we see that the generatizéoda lattice (1.1) is always
conformally invariant, since the vector fields (2.25) generate arbitrary reparametrizations of
x andy, accompanied by appropriate transformations of the figldsMore specifically, the
conformal transformations leaving equation (1.1) invariant are

X=x,A) y=xA)

i (%.5) = dy dx (2.28)
Upy(x,y) =u,(x,y) — b, In <a a)
whereyr (x, A) andx (y, A) are arbitrary functions of andy, related tct (x) andn(y) by the

relations
=y, =T A+Tk)

2.29
J=x0, ) =S+ S>) (2.29)

with

* o ds Yodt
T — - S — — . 2.30
0 A £6) o2 A @) (2:30)

The vector fieldsﬁj (r)and Vj (s) generate gauge transformations: certain functions obtained

by integrating the vector fields can be added to any solution. Formally, the opef'@tors
generate linear transformations among components of solutions. However, the sums are over
an infinite range, so convergence problems may arise. Moreover, we have

Ay (Z qbfnum) =0 (2.31)

as a consequence of equation (2.21). In other words, if equation (2.21) admits non-trivial
solutions, than one can always perform a linear transformation amomg'thén such a way
thatg, — ¢ new fieldsy, = ), @' un, satisfying the wave equatidnd,v; = 0, are replaced
in the Toda system.

As stated in theorem 1, the problem of finding all symmetries of equation (1.1) reduces to
solving the recursion relations (2.18), (2.21) and (2.24). In general, this may not be possible
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analytically in closed form. Well developed techniques exist for solving homogeneous and
inhomogeneous difference equations with constant coefficients [32, 33]. This is the case that
occurs for all generalized Toda field theories that we found in the literakyr@) andk, (m)

do not depend on andm, respectively. The non-zero commutation relations for the symmetry
algebra of the generalizexb-Toda theory (1.1) are:

[X (5D, X(E2)] = X (E152x — E10 &2) [¥ (1), Y (12)] = Y (n1n2.y — 11y 12)
[X©),0;(n] = U;Er) [Y (), V()] = V;(nsy)

R @), 2 < ~0, (sx mef,) P, 2 = =7, (n zbnqs,a)
[0a(r), 2] = U; ( qui,,w::,) [Va(s), Zi] =V, < Z¢>£m:;>
[zab» ch] = (Z ¢iw,(:l> zcb - (Z (f),l:lw,(n) Zad-

The algebra of vectorfield%ﬂ is finite dimensional (its dimensionds= (p,— p1) x (g2—q1)).
However, its isomorphism class cannot be determined without specifying the fungjamsi
Yy, i.e. the matricegf andkX in (1.1). In all examples in the literature, we have eitiies 1
or 0. Itis, however, easy to invent examples in Whﬂél_’)l} is simple, semisimple, solvable or
whatever we postulai priori.

The overall structure of the obtained Lie algebra is

(2.32)

(X1e(Yh»(Z)» U aV)). (2.33)

If {Z} is solvable, then (2.33) amounts to a Levi decomposition, since{Botiand{Y}
are centreless Virasoro algebras and hence simple. We recall that the Levi theorem does not
hold for infinite-dimensional Lie algebras and a Levi decomposition does not necessarily exist.
Let us sum up the general results obtained so far for the symmetries of the generalized
oo-Toda field theories (1.1) under the constraints imposed in theorem 1.

(a) The theory is always conformally invariant, since the inhomogeneous equation (2.24)
always has a solution.

(b) The theory allows gauge transformatidnandV if p, — p1 > 1.

(c) The transformations of typ# exist if (p» — p1)(g2 — q1) > 1.

2.2. Special cases

2.2.1. The Mikhailov—Fordy—Gibbons two-dimensiosaiToda system (1.2). We have
h_1(n) = —ho(n) = 1 and k_1(n) = —ko(n) = —1 (2.34)

S0 py — p1 = g2 — g1 = 1. From equations (2.18) and (2.21) we have

Equations (2.23) and (2.24) in this case imply

ﬂnzﬂ(x)"'ngx J/n=7/(y)+f”7y-
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From theorem 1 we now obtain all symmetries of equation (1.2), namely

X(E) =E@a +E Y nd, Y =nd, +n, Y nd,
U=px) Y o, V=y@ Y a, (2.35)

The generator&, ¥, U and V were obtained in [21] using the so-called ‘intrinsic method’.
The generatoZ was not obtained there and cannot be obtained by the intrinsic method.

2.2.2. The Toda field theory (1.3)We takeH = I. Then equations (2.18), (2.21) and (2.24)
in this case imply

Bm = —&x Ym = —1y Ay =0.
The theory is only conformally invariant

XE =6 —& Y 0, YD =10y —ny Y d, (2.36)
and no further symmetries are obtained.

2.2.3. The Toda field theories (1.4)We takeK = I and relation (2.21) implies
Ay =0,

The remaining equations (2.24) cannot be solved explicitly for gehg(al), but as mentioned
above, we can easily deal with in the constant coefficients case. As an example, let us restrict
to the case whe# is the A, Cartan matrix (this is thd y Cartan matrix fov — oo, where

the limit is taken symmetrically from a fixed, but not extremal, vertex in the corresponding
Dynkin diagram). Thus we have

hoi=hyg=-1 ho =2 (2.37)
the solutions (2.23) become
By = %nz & tnra(x) +ri(x) Vo = %nz ny +nsa(y) +51(y). (2.38)

The symmetry algebra is

XE) =)o, +36 > n?d, YD =nOdy+3n, Y n%,

Ur(r) = ri(x) ) d,, Vils) =s5100) ) i, (2.39)
Ua(ra) =ra(x) Y ndy, Va(s2) = 52(y) Y ndy,

whereg (x), n(y), ri(x), s1(y), r2(x) ands,(y) are arbitrary smooth functions.
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3. Symmetries of finite generalized Toda field theories

3.1. General results

In this case we have a systemmfpartial differential equations iv fieldsu,, (x, y), namely
M N

Un,xy = F, F, = Z Kym eXp(Z Hml“l) A<n<N). (31)
m=1 =1

The ‘coupling constant’ matriced andK satisfy# € R¥*Y andK € RV*M . The system
(3.1) could arise in a quite general field theory with the Lagrangian

N M N
‘C = % Z Kmn axumayun - Zlcm exp (; Hml”l) (Cm 5& O) (32)

m,n=1
with
K=L"*HTC L=23k+«") C =diagcy, ..., cn). (3.3)

Some general considerations concerning the system (3.1) are in order.
First, if eitherK or H (or both) allow an inverse, or at least a left inverse, then this system
can be simplified. Indeed, l& —* exist. We put,, = > Knmpm and obtain

M
Py = €XP (Z(H K )mm) 1<m< M. (3.4)
=1

Conversely, letd * exist and putw; = >, H;;u;, we obtain

M
Wiy = Y (HK)j€" 1<m<M. (3.5)
j=1
In other words, one of the matricés or K can be normalized té,, if it is left invertible.

The second comment is that the system (3.1) with= [ admits Lie—Backlund
transformations, and in this sense is completely integrable, if the métrix a Cartan, or
a generalized Cartan matrix [19].

We mention that in the case of the infinite Toda field theories the matficand K in
general have non-trivial kernels, are hence not invertible and we cannot normalize them.

Let us now turn to the Lie point symmetries of the system (3.1). We write a general
element of the symmetry algebra in the form (2.2) (with the sum in the range:1< N),
apply its prolongation to equation (3.1) as in equation (2.4). From the determining equations
we find that for anyF, in equation (3.1), in complete analogy with the-Toda theory, a
general element of the symmetry algebra will have the form (2.5), the summation being from
l1toN.

Two determining equations remain and they depend on the specific forf),
equation (3.1). Making use of the fact that all the exponentials are linearly independent (no
two rows inH coincide) and that the matriX has no zero column, we reduce the remaining
determining equations to two matrix relations

HA=0 (3.6)
[(A— & +n)DK]um = Ky (HB) (1<n<N,1<m<M). (3.7)
We multiply equation (3.7) by? from the left and use (3.6) to obtain

=+ ny)(HK)m = (HK ) (H B) Vk, m. (3.8)
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If the matrix H K has no zero column, then we obtain

HB = —(& +n)1m (3.9)
wherely, = (1, ..., 17 € R, and from equation (3.7)
AK = 0. (3.10)

Thus, matrixA must satisfy the same two homogeneous equations (3.6) and (3.10) as in the
infinite case. Furthermore, if; is in the image ofH, then we defingy € R" to be an
arbitrarily chosen (but specified) solution of the inhomogeneous equation

Hby = 1,. (3.11)
The results of these considerations can be summed up as follows.

Theorem 2. Consider the generalized Toda field theories (3.1) with a finite number of fields
N. Assume that all rows i# are different and that the matrik K has no zero column. Then
three types of symmetries can occur and they depend on the properties of the fundamental
spaces of the matricgd and K. The symmetries are of the same form as in theorem 1, except
that all summations range from 1 fé. However, ifl,; € Im(H), theng andy are arbitrary
functions ofx andy, respectively, and the theory is conformally invariant. The quantitjes
are the components of the vectgy, itself an arbitrary solution of equation (3.11). Otherwise,
if 1ns & Im(H), the theory is invariant only under the Poinéagroup, generated by

PL=0d, Pr=0, L =xd, — yd,. (3.12)
Gauge transformations exist onlyAf is not invertible. Analogously to the formulae (2.26),
ands; are arbitrary functions and the vectots’ spanKer(H). Finally, the vectorsp' span
the left kernel ok . If this space is not zero, thetim (Ker (K 7)) x dim(Ker(H)) symmetries
of the form (2.27) are admitted.

From theorem 2, in contrast to the case of infinitely many fields, conformal invariance is not
a priori guaranteed, but it imposes restrictions on the imagd ofGauge symmetries exist
only if the matrix H has a non-zero kernel.

3.2. Special cases

3.2.1. The Mikhailov—Fordy—Gibbons Toda theory and generalizatio@ansider the field
equation

12 N
U, = n ; " exp(Be; - U) (3.13)
whereU = (uy, ..., uy) isanN-ple of real fields anday, . . ., ay) denote the simple roots

of a classical simple finite Lie algebra. Equations (3.13) above take the form (1.2) for all
satisfyingNo < n < N — 1. Forn = N we obtain

UNxy = eXPuy-1— Uy)- (3.14)

The equations for X n < Ny are different for each Cartan series. The numtigis equal to
2for Ay, By, Cy,and 3 forDy.
For theA y algebra we have

Ul xy = — eX[Xu]_ — uy). (315)
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Conformal and gauge transformations are exactly the same as given in equation (2.35) (except
that the summations are from 1 A9).
For the By algebra we have

Uy xy = exp(—u1) — explus — uz). (3.16)

Conformal transformations are as in equation (2.35) (with the same comment about the
summations) and there is no gauge invariance.
For theCy algebra we have

Ulyxy = — expluy —up) + 2 eX[L(—Zu]_). (317)

The only symmetry is conformal invariance, generated by

N
X(E) =) +E Y (n—3)

" (3.18)
Y(0) =n(dy+ny > (n—3) 0,

n=1

Finally, for the Dy algebra we have

U1 xy = EXP(—uy — uz) — eXpluy — uz)

(3.19)
Uz xy = exp(—ui — uz) + explus — uz) — expluy — us).
Again, the only symmetry is conformal invariance, in this case generated by

R N
X(E) =)0, +& Y (0 — 13,

n=1
) N (3.20)
Y(n) =n()dy +ny Y _(n = 1)d,,.

n=1

We mention that the infinite system (1.2) can also be reduced to the finite one by imposing
periodicity uy+1 = u1. In this casely is not contained in IrtH) and there is no conformal
invariance. Thus, the symmetry is given by the two-dimensional P@ralgebra (3.12) and
by the gauge generators given in (2.35).

3.2.2. The Toda field theory (1.3).The symmetries are the same in the finite case as in the
infinite one, namely the conformal transformations generated by (2.36) (for any finite matrix
k).

3.2.3. The finite Toda theories (1.4)Since the Cartan matrik is invertible, this theory is
equivalent to that described by equation (1.3) in the sense of equations (3.4) and (3.5). Hence
this theory is always and only conformally invariant. However, the generators of the vector
fields take a slightly different form, which we report for a subsequent discussion.

For theA y algebra the generators are given by

N
W =&@)d, +n(y)dy + 3G +n) Y _n(n— N — 1), (3.21)
n=1
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For the By algebra, the symmetry generator is given by

N
W = ‘i:(x)ax + n(y)ay - %(%—x + r)y) {N(N + 1)8141 + ZZ[N(N + 1) - n(n - l)]au,, .

n=2
(3.22)
For theCy algebra, the symmetry generator is given by
N
W =§(x)d, +n(y)dy + %(Ex +1y) Z[n(n —2)—N?*+ 1]y, - (3.23)
n=1
Finally, for theDy algebra (v > 4), one has
W = E(x)d, +n(y)dy — 3 (& + m){N(N — DBy + 8)
N
+2) [IN(N —1) — (n — 2 (n — 1)]3,, } (3.24)
n=3

4. Symmetries of generalized semi-infinite Toda field theories

4.1. General results

Let us now restrict the range of the discrete variabte be 1< n < oco. Both the equations
(1.1) of the generalized Toda field theories, and their symmetries will be modified. The matrices
H and K will no longer be pure band matrices but will have the form

H =
Hiq Hl,N
Hyq oo oo ... Hun
I'IM+1,M+1+p1 HM+1.M+1+p2
Hyr4o M+2+4p, Hyrv2, m+2+p,

(4.1)

whereM + p; < N < M + p, and the void entries are equal to zero. Similarly, the makrix
takes the form

Kl,l - Kl,N’
K nrs14g, Nr+1

KMfJ_ - KM’,N’ - KNf+2+q1’Nr+2
K- ... .. . 4.2)
K nrs14g, Nr+1

K Nr42+4g,, N7+2
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whereN’+q; < M’ < N'+¢,. Although one could easily construct non-trivial models, which
do not fit in the given scheme, they seem quite artificial and, moreover, all the cases which we
found in the literature satisfy the above restrictions.

We denote by and K, respectively, the x N andM’ x N’ matrices, which can be
extracted by taking the firgiZ rows and the firstv columns fromH and, in turn, the first/’
rows and the firsv’ columns fromk .

The symmetry algebra of the semi-infinite Toda field theory equation can either be obtained
directly, ab initio, or we can obtain it from the infinite case of section 2, by adding appropriate
boundary conditions and requiring that they be invariant. As above, the funéiions;(y),

A, and B, (x, y) must satisfy the remaining determining equations (2.7)—(2.9). Following
the same reasoning as in the finite case (see section 3), we obtain the analogues of all the
relations (3.6)—(3.10), where now all the labels and summations range fromol(t@. we

takeN — oo in all formulae). The key equation of the discussion is equation (3.9) and its
associated homogeneous system. Here, we separate the problem into the finite subsystems

HB=0 (4.3)
HB=—(+1)1lm (4.4)
whereB = (B, ..., By), and a difference linear equation, which we can put again in the

form (2.18) or (2.24), respectively, far> M + 1. Equation (4.3) has KéH) as its solution
space. On the other hand, the difference equation (2.18) ()gas-ap;)-dimensional solution
space, the elements of which have the form

B, = Z v, nzM+1+p; (4.5)

in terms of the basi{sw,{ } Moreover, the difference equation (2.18) has only the zero solution

in the casep; = p,. However, because of the imposed restrictions on the forrH oin

such a case the components of the ved@oare decoupled from the remainii@y+1, . . .).

This means that the semi-infinite homogeneous linear syst®&m= 0 has a zero-dimensional

kernel only if both the finite system (4.3) and the homogeneous difference equation (2.18) do.
Assuming now thafp; < p, and, moreover, that/ + p; + 1 < N, the components

(Bum+14p» - - - » By) have to satisfy both the finite linear equation (4.3) and the difference

equation (2.18). Substituting the representation (4.5) into (4.3), we altaiim(Ker(H))

constraints on thew;}i—1, . y,—p,. Thus, if it results that

M — N + p, +dim(Ker(H)) = ng > 0 (4.6)

then the semi-infinite homogeneous systém = 0 admits am-dimensional kernel, spanned
by the set of linearly independent functlo{‘;@’}

The above result implies that, if the constréuht (4 6) holds, then the semi-infinite Toda
model defined by (4.1) and (4.2) possesses a symmetry group of gauge transformations,
generated by the R ng vector fields

o0 oo
Uirp) =ri0) Y %0, Vi) =550 Y xJde, G =1....p2—pn. (&47)

n=1 n=1
As in the finite case, a semi-infinite theory is conformally invariant if the inhomogeneous
equation (3.9) (for semi-infinite matrices) has a solution. Thus, now we must require that the
vectorl = (1,1,...) be contained in IrfaH). However, as outlined above, the problem is
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reduced to finding a solution of the equation (4.4) and of the difference equation (2.24). The
former equation is solved if

1a € Im(H). (4.8)

For the difference equation (2.24) a solution always exists as seen in section 2. Hence the
structure of the matri¥! shown in (4.1) guarantees that a solution of the total inhomogeneous
system always exists, once equation (4.8) is satisfied here. In conclusion, the condition (4.8)
is not only necessary, but also sufficient to ensure the conformal invariance of the given Toda
theories.
Finally, an analysis similar to the study of the gauge invariance can be performed#or the

type transformations, which exist if a common solution of the two semi-infinite homogeneous
systems

HA=0 AK =0 (4.9
can be found. Thus, we are led to the following theorem.

Theorem 3. Consider the semi-infinite Todafield theory (1.1), witandK given by (4.1) and

(4.2), respectively, and with all rows &f different. Moreover, leH K have no zero columns.

Then, the symmetry algebra depends on the fundamental spaces of the finite-dimensional
submatricesd and K, on the solutions of the difference equations (2.18) and (2.24) for

n > M + 1and, finally, on the solutions of the difference equation (2.21)fot N’ + 1.

The theory is conformally invariant if the condition (4.8) holds. The corresponding
generators take the form (2.25). Otherwise, if (4.8) does not hold, the symmetry reduces
to the Poincaé group generated by (3.12).

A gauge transformation group, involvirgo arbitrary functions of one variable, exists
if the relation (4.6) holds. The algebra generators take the form (4.7). Finallype gauge
transformations exist if not only (4.6) holds, but also the supplementary condition

N' = M’ +g+dim(Ker(K")) = mo > 0 (4.10)

is satisfied. In such a case they form a Lie algebra of dimensipr ng.

4.2. Special cases

Now let us consider the same three examples as in the previous sections.

4.2.1. Mikhailov—Fordy—Gibbons field theories.All examples of section 3.2 can be
generalized to the semi-infinite case, simply allowiNigo go tooco for each classical Lie
algebra. The equations labelled byln < Np are given explicitly by (3.15)—(3.17) and
(3.19), respectively. Moreover, fér> Ny the equations are the same as in the infinite case,
i.e. equation (1.2).
For theA ..+ algebra (we use this notation in order to distinguish this semi-infinite model
from the previously introduced, infinite one), we havd/ = N = M’ = N’ = 0 and hence
the symmetries are exactly the same as in the infinite and in the finite cases (see equation (2.35)),
where the summations are over the appropriate range.
For theB,, algebraone had = —K = (1), thenalsa¥ = N = M’ = N’ = 1, as one
can see from (3.16). Theorem 3 allows one to establish that there are no gauge transformations
of any kind and the generators of the conformal transformations are the same as given in (2.35).
From equation (3.17) one sees thdt = —K = (—2) for the C,, algebra, then
M = N = M = N = 1. Thus, theorem 3 establishes that only the conformal invariance
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is admitted. Its generators have the same form as in equation (3.18), where the summation is
over the positive integers.
Finally, for the D, algebra one has

- -1 -1 -
H: :—KT.
1 -1

Theorem 3 implies that only conformal transformations leave the system invariant and their
generators are obtained by taking the liNit—> oo in the formulae (3.20).

4.2.2. The semi-infinite Toda field theory (1.3 he discussion is very simple. Indeed, since

H is the identity matrix, there are no gauge transformations. Moreover, the generators of the
conformal transformations in the infinite, semi-infinite and finite cases always take the same
form (2.36), where the summations are over the appropriate range.

4.2.3. The semi-infinite Toda field theories (1.4As opposed to the finite case, the matkx
is no longer invertible, so now these theories are not equivalent to those given by (1.3).

First, we observe that, sindé s the identity matrix, there are ro-type transformations.
For any classical Lie algebra, extended\Mo— oo, the recursive part of the systems, i.e. the
equations labelled by > Ny as defined in section 3.2, are always the same as in the infinite
case discussed in section 2.2.3. The solution of the corresponding difference equations for
B, (n > Np), that is (2.18) and (2.24), are the same as in (2.38) and the generators are as in
(2.39). However, for I n < Ny the equations provide constraints of the form (4.3) and (4.4).
The application of theorem 3 implies

(a) All the semi-infinite systems (1.4) are conformally invariant.
(b) All the semi-infinite systems (1.4) have = 1, as defined in (4.6), hence a gauge
transformation algebra of the form (4.7) exists, with= 1.

In the A+ case theX and¥ conformal symmetries survive as in equation (2.39), and so
do U, andV,. However, the symmetrigg; andV; are no longer present.

In the B, case the generatoks ¥ andU,, V, combine together to give the new conformal
symmetry generators,

o0

X =8, +36 Y nn—Dd, ¥ =n()d,+3n, > ne—1)0,. (4.11)
n=1 n=1

The remaining gauge invariance is generated by

U(r) =r(x) [am *2)" aun} V(s) = s(y) [a +2) a] (4.12)

n=2 n=2

For theC, algebra the symmetry algebra is

X =)0, + 386 Y n(n—2),
n=1

oo

Y =n(y)dy + 30y Y nn —2)d, (4.13)

n=1

Ur)y=r(0)) 8, V() =5())_ b,
n=1

n=1
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Finally, for the D, algebra one has

X =£@o +36 Y (n—Dn—2)d,

n=1

Y =n()dy+ 30, Y _(n— D(n - 2)a,

n=1

U(r) =r(x) [aul +0,, +2) a]

n=3

(4.14)

V(S) = S()’) |:aul + 8u2 + ZZ 8u,,:|-

n=3

The formulae for the semi-infinite models (1.4) are consistent with those obtained in the finite
case in section 3.2.3. The generators of the conformal invariance, in each case, are simply
obtainable by dropping all terms involvirdg. Conversely, the terms proportional to a power of

N provide us with the gauge invariance generators in the semi-infinite extensions. In this limit,
the functions- = &, ands = n, must be considered as new linearly independent functions.

5. Conclusions

We have introduced the generalized Toda system (1.1) and investigated its Lie point symmetry
group. It turned out that in the infinite cageoco < n < o0) these systems are always
invariant under an infinite-dimensional group of conformal transformations. It is also gauge
invariant, if a certain homogeneous linear difference equation (i.e. equation (2.18)) has non-
trivial solutions. Further gauge transformations exist if another linear homogeneous difference
equation (i.e. equation (2.21)) also has non-trivial solutions.

If we restrict the range of to 1 < n < oo, in some cases the symmetry group remains
the same, or is reduced to a subgroup of the original symmetry group. However, in other cases
(see (4.12) and (4.14)) the symmetry group does not coincide with a Lie subgroup.

In the finite case, with 1< n < N, the symmetry group remains the same as in the
semi-infinite case, or it is reduced further.

In some situations (see theorems 2 and 3) the infinite-dimensional conformal symmetry
group is reduced to the Poinéagroup in two dimensions (see equation (3.12)).

These results were obtained directly, that is by analysing the determining equations for the
symmetries for all types of systems: infinite, semi-infinite and finite. The question to which
we plan to devote a separate paper is the application of the infinite generalized Toda systems.
In particular, we will establish the degree to which the symmetries of the semi-infinite and
finite Toda systems are ‘inherited’ from those of the infinite systems. In other words, we plan
to discuss symmetry breaking by boundary or periodicity conditions of the infinite chains.

One of the surprising results obtained in this paper is that the class of the conformally
invariant Toda field theories is much larger than the class of the completely integrable models.
Indeed, the existence of a Lax pair imposes severe algebraic restrictions on the ntafiweds
K (see, for instance, [19]).
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